
CS 537 Notes, Section #7: Semaphore

Example: Readers and Writers

Semaphore usage generally falls into two classes:

1. Uniform resource usage, simple first-in-first-out scheduling: use semaphores for

everything. This is usually the case. Use one semaphore for each constraint in the

system.

2. More complex patterns of resource usage: interaction between different users of a

resource, or changing priorities: semaphores cannot capture the scheduling all by

themselves. Must use state variables to record information about priorites, resource

state. In this case, semaphores get used for two things:

o One semaphore for mutual exclusion on the state variables.

o One semaphore for each class of waiting; used just as a convenience to make a

process wait. In the worst case, one semaphore per process.

Whenever possible, cast problems into the first class. This usually can be done.

Unfortunately, sometimes a resource is shared by different classes of users; that is,

they use the resource in different ways. Potentially the different kinds of usage

interact. For example, consider a shared database with readers and writers. It is safe

for any number of readers to access the database simultaneously, but each writer must

have exclusive access. Example: checking account (statement-generators are readers,

tellers are writers).

o Note that writers are actually readers too.

o In this case, the constraints are too complicated to be solved single-handedly

with semaphores.

o Constraints:

 Readers can only proceed if there are no active or waiting writers (use

semaphore OKToRead).

 Writers can only proceed if there are no active readers or writers (use

semaphore OKToWrite).

 Only one process may manipulate internal state variables at once (use

semaphore Lock).

o Scheduling: writers get preference.

o State variables:

 AR = number of active readers.

 WR = number of waiting readers.

 AW = number of active writers.

 WW = number of waiting writers.

AW is always 0 or 1. AR and AW may not both be non-zero.

o Initialization:
 semaphore OKToRead = new semaphore(0);

 semaphore OKToWrite = new semaphore(0);
 semaphore Lock = new semaphore(1);
 int AR = 0, WR = 0, AW = 0, WW = 0;

Reader Process: Writer Process:

 StartRead ()

 {

 Lock.P();

 if ((AW+WW) == 0) {

 OKToRead.V();

 AR++;

 } else {

 WR++;

 }

 Lock.V();

 OKToRead.P();

}

 StartWrite ()

 {

 Lock.P();

 if ((AW+AR+WW) == 0) {

 OKToWrite.V();

 AW++;

 } else {

 WW++;

 }

 Lock.V();

 OKToWrite.P();

}

EndRead ()

 {

 Lock.P();

 AR--;

 if ((AR == 0) and (WW > 0)) {

 OKToWrite.V();

 AW++;

 WW--;

 }

 Lock.V();

}

 EndWrite ()

 Lock.P();

 AW--;

 if (WW>0) {

 OKToWrite.V();

 AW++;

 WW--;

 } else {

 while (WR>0) {

 OKToRead.V();

 AR++;

 WR--;

 }

 }

 Lock.V();

 }

 main ();

 {

 StartRead();

 // --read the necessary data--

 EndRead();

 }

 main ();

 {

 StartWrite();

 // --write the necessary data--

 EndWrite();

 }

Examples:

o Reader enters and leaves system.

o Writer enters and leaves system.

o Two readers enter system.

o Writer enters system and waits.

o Reader enters system and waits.

o Readers leave system, writer continues.

o Writer leaves system, last reader continues and leaves.

Questions:

o In case of conflict between readers and writers, who gets priority?

o Is the WW necessary in the writer's first if?

o Can OKToRead ever get greater than 1? What about OKToWrite?

o Is the first writer to execute Lock.P() guaranteed to be the first writer to access

the data?

Copyright © 1997, 2002, 2008, 2011 Barton P. Miller

Non-University of Wisconsin students and teachers are welcome to print these notes

their personal use. Further reproduction requires permission of the author.

